Novinnam

EmailHomeAboutProjects

PROJECT DETAILS

Single Power Screw Press Machine - Component and Connection Calculations

This project involves the design and optimization of a Single Power Screw Press Machine. The goal is to determine the calculations for each of its components and their interconnections for optimized performance.

Required Project Output

The project involves designing a Single Power Screw Press Machine, which includes selecting suitable materials, performing analytical and numerical validation, creating 3D CAD models, generating working drawings, and providing an assembly drawing. Finally, a calculation report will document the design methodology, results, and analysis to ensure optimal performance and safety.

1. A completed project must have:

Screw Press Design
Screw Press DesignScrew Press Design Details
Assembly ViewFinal Design

CALCULATIONS

2. Methods

The analysis followed systematic mechanical engineering design practices. Calculations were carried out using fundamental equations for:

2.1 Compressive Buckling and Safety Factor Evaluation Using Johnson's Formula:

Define known inputs:

ParameterValue

PP

20kN20 kN

LL

180mm180 mm

EE

2.0105MPa2.0·10^5 MPa

nsn_s

33

SyS_y

550MPa550 MPa

Calculation Image

Determine Effective Length:

le(l)=0.7lle(l) = 0.7 · l

Calculate Minimum Required Core Diameter d:

d(P,le(l),E,ns)=32Ple2nsπ2Ed(P, le(l), E, ns) = \sqrt{\frac{32 \cdot P \cdot le^{2} \cdot ns}{\pi^{2} \cdot E}}

d(P,le(l),E,ns)=8.373mmd(P, le(l), E, ns) = 8.373 mm

Calculation Image

Select Thread Based on Required Diameter:

S22x3 with minor d = 16.794 mm is chosen

Calculation Image

Section Properties & Slenderness:

A(d)=πd24A(d) = \frac{\pi d^2}{4}

rg(A,I)=IArg(A,I) = \sqrt{\frac{I}{A}}

I(d)=πd432I(d) = \frac{\pi d^4}{32}

A(d)=221.512mm2A(d) = 221.512 \, \text{mm}^2

rg(A(d),I(d))=5.938mmrg(A(d), I(d)) = 5.938 \, \text{mm}

I(d)=(7.809×103)mm4I(d) = (7.809 \times 10^3) \, \text{mm}^4

Ccr(rg,E,Sy)=2π2ESyC_{cr}(rg, E, Sy) = \sqrt{\frac{2 \cdot \pi^2 \cdot E}{Sy}}

C(e,rg)=ergC(\ell_e, rg) = \frac{\ell_e}{rg}

Ccr(rg,E,Sy)=84.722C_{cr}(rg, E, Sy) = 84.722

C(e,rg(A(d),I(d)))=21.221C(\ell_e, rg(A(d), I(d))) = 21.221

Buckling Check & Safety Factor:

σJ(Sy,e,E,rg)=SySy24π2E(e(l)rg(A(d),I(d)))2\sigma_J(S_y, \ell_e, E, r_g) = S_y - \frac{S_y^2}{4 \pi^2 E} \cdot \left(\frac{\ell_e(l)}{r_g(A(d), I(d))}\right)^2

σJ(Sy,e,E,rg)=532.747MPa\sigma_J(S_y, \ell_e, E, r_g) = 532.747 \, \text{MPa}

σ(P,A):=PA\sigma(P, A) := \frac{P}{A}

σ(P,A(d))=90.288MPa\sigma(P, A(d)) = 90.288 \, \text{MPa}

n:=σJ(Sy,e,E,rg)σ(P,A(d))n := \frac{\sigma_J(S_y, \ell_e, E, r_g)}{\sigma(P, A(d))}

n=5.901n = 5.901

2.2. Contact stress between the screw and the washer:

Wash material: High leaded Tin Bronze, UNS C93200, Copper casting alloy, Bearing Bronze SAE 660

Sub=240MPaS_{ub} = 240 \, \text{MPa}

Syb=120MPaS_{yb} = 120 \, \text{MPa}

Eb=100GPaE_b = 100 \, \text{GPa}

νb=0.35\nu_b = 0.35

Scb=320MPaS_{cb} = 320 \, \text{MPa}

HBb=65HB_b = 65

Screw

Washer (Bronze)

The diameter of screw head, washer groove:

da=60mmd_a = 60 \, \text{mm}

db=62mmd_b = 62 \, \text{mm}

Ea=2105MPaE_a = 2 \cdot 10^5 \, \text{MPa}

Eb=1105MPaE_b = 1 \cdot 10^5 \, \text{MPa}

νa=0.3\nu_a = 0.3

νb=0.35\nu_b = 0.35

Ra=da2=30mmR_a = \frac{d_a}{2} = 30 \, \text{mm}

Rb=db2=31mmR_b = \frac{d_b}{2} = 31 \, \text{mm}

Novin

An independent full-stack web developer from Ireland.

PAGES

HomeProjectsAboutNow

Version 1.0.0 – Date: Sunday 17 August at 01:50

RSSPrivacyMore Info

Built with Reflex